Tuesday, 1 October 2013

Cities[edit]

Nitrogen dioxide concentrations as measured from satellite 2002-2004
Deaths from air pollution in 2004
Air pollution is usually concentrated in densely populated metropolitan areas, especially in developing countries where environmental regulations are relatively lax or nonexistent[citation needed]. However, even populated areas in developed countries attain unhealthy levels of pollution with Los Angeles andRome being two good examples.[53]

NATA[edit]

The National-Scale Air Toxics Assessment (NATA) is EPA's ongoing comprehensive evaluation of air toxics in the U.S. EPA developed the NATA as a state-of-the-science screening tool for State/Local/Tribal Agencies to prioritize pollutants, emission sources and locations of interest for further study in order to gain a better understanding of risks. NATA assessments do not incorporate refined information about emission sources, but rather, use general information about sources to develop estimates of risks which are more likely to overestimate impacts than underestimate them. NATA provides estimates of the risk of cancer and other serious health effects from breathing (inhaling) air toxics in order to inform both national and more localized efforts to identify and prioritize air toxics, emission source types and locations which are of greatest potential concern in terms of contributing to population risk. This in turn helps air pollution experts focus limited analytical resources on areas and or populations where the potential for health risks are highest. Assessments include estimates of cancer and non-cancer health effects based on chronic exposure from outdoor sources, including assessments of non-cancer health effects for Diesel Particulate Matter (PM). Assessments provide a snapshot of the outdoor air quality and the risks to human health that would result if air toxic emissions levels remained unchanged.[54]
Most Polluted World Cities by PM[55]
Particulate
matter,
μg/m³ (2004)
City
168CairoEgypt
150DelhiIndia
128Kolkata, India (Calcutta)
125TianjinChina
123Chongqing, China
109Kanpur, India
109Lucknow, India
104JakartaIndonesia
101Shenyang, China

Governing urban air pollution – a regional example (London)[edit]

In Europe, Council Directive 96/62/EC on ambient air quality assessment and management provides a common strategy against which member states can "set objectives for ambient air quality in order to avoid, prevent or reduce harmful effects on human health and the environment . . . and improve air quality where it is unsatisfactory".[56]
On 25 July 2008 in the case Dieter Janecek v Freistaat Bayern CURIA, the European Court of Justice ruled that under this directive[56] citizens have the right to require national authorities to implement a short term action plan that aims to maintain or achieve compliance to air quality limit values.[57]
This important case law appears to confirm the role of the EC as centralised regulator to European nation-states as regards air pollution control. It places a supranational legal obligation on the UK to protect its citizens from dangerous levels of air pollution, furthermore superseding national interests with those of the citizen.
In 2010, the European Commission (EC) threatened the UK with legal action against the successive breaching of PM10 limit values.[58] The UK government has identified that if fines are imposed, they could cost the nation upwards of £300 million per year.[59]
In March 2011, the City of London remains the only UK region in breach of the EC’s limit values, and has been given 3 months to implement an emergency action plan aimed at meeting the EU Air Quality Directive.[60] The City of London has dangerous levels of PM10 concentrations, estimated to cause 3000 deaths per year within the city.[61] As well as the threat of EU fines, in 2010 it was threatened with legal action for scrapping the western congestion charge zone, which is claimed to have led to an increase in air pollution levels.[62]
In response to these charges, Boris JohnsonMayor of London, has criticised the current need for European cities to communicate with Europe through their nation state’s central government, arguing that in future "A great city like London" should be permitted to bypass its government and deal directly with the European Commission regarding its air quality action plan.[60]
In part, this is an attempt to divert blame away from the Mayor's office, but it can also be interpreted as recognition that cities can transcend the traditional national government organisational hierarchy and develop solutions to air pollution using global governance networks, for example through transnational relations. Transnational relations include but are not exclusive to national governments and intergovernmental organisations [63] allowing sub-national actors including cities and regions to partake in air pollution control as independent actors.
Particularly promising at present are global city partnerships.[64] These can be built into networks, for example the C40 network, of which London is a member. The C40 is a public ‘non-state’ network of the world’s leading cities that aims to curb their greenhouse emissions.[64] The C40 has been identified as ‘governance from the middle’ and is an alternative to intergovernmental policy.[65] It has the potential to improve urban air quality as participating cities "exchange information, learn from best practices and consequently mitigate carbon dioxide emissions independently from national government decisions".[64] A criticism of the C40 network is that its exclusive nature limits influence to participating cities and risks drawing resources away from less powerful city and regional actors.

Atmospheric dispersion[edit]

The basic technology for analyzing air pollution is through the use of a variety of mathematical models for predicting the transport of air pollutants in the lower atmosphere. The principal methodologies are:
Visualization of a buoyant Gaussian air pollution dispersion plume as used in many atmospheric dispersion models.[66]
The point source problem is the best understood, since it involves simpler mathematics and has been studied for a long period of time, dating back to about the year 1900. It uses a Gaussiandispersion model for continuous buoyant pollution plumes to predict the air pollution isopleths, with consideration given to wind velocity, stack height, emission rate and stability class (a measure of atmosphericturbulence).[66][67] This model has been extensively validated and calibrated with experimental data for all sorts of atmospheric conditions.
The roadway air dispersion model was developed starting in the late 1950s and early 1960s in response to requirements of the National Environmental Policy Act and the U.S. Department of Transportation (then known as the Federal Highway Administration) to understand impacts of proposed new highways upon air quality, especially in urban areas. Several research groups were active in this model development, among which were: the Environmental Research and Technology (ERT) group in LexingtonMassachusetts, the ESL Inc. group in Sunnyvale,California and the California Air Resources Board group in Sacramento, California. The research of the ESL group received a boost with a contract award from the United States Environmental Protection Agency to validate a line source model using sulfur hexafluoride as a tracer gas. This program was successful in validating the line source model developed by ESL Inc. Some of the earliest uses of the model were in court cases involving highway air pollution, the Arlington,Virginia portion of Interstate 66 and the New Jersey Turnpike widening project through East BrunswickNew Jersey.
Area source models were developed in 1971 through 1974 by the ERT and ESL groups, but addressed a smaller fraction of total air pollution emissions, so that their use and need was not as widespread as the line source model, which enjoyed hundreds of different applications as early as the 1970s. Similarly photochemical models were developed primarily in the 1960s and 1970s, but their use was more specialized and for regional needs, such as understanding smog formation in Los Angeles, California.

See also[edit]

Control devices[edit]

The following items are commonly used as pollution control devices by industry or transportation devices. They can either destroy contaminants or remove them from an exhaust stream before it is emitted into the atmosphere.
  • Particulate control
    • Mechanical collectors (dust cyclones, multicyclones)
    • Electrostatic precipitators An electrostatic precipitator (ESP), or electrostatic air cleaner is a particulate collection device that removes particles from a flowing gas (such as air) using the force of an induced electrostatic charge. Electrostatic precipitators are highly efficient filtration devices that minimally impede the flow of gases through the device, and can easily remove fine particulates such as dust and smoke from the air stream.
    • Baghouses Designed to handle heavy dust loads, a dust collector consists of a blower, dust filter, a filter-cleaning system, and a dust receptacle or dust removal system (distinguished from air cleaners which utilize disposable filters to remove the dust).
    • Particulate scrubbersWet scrubber is a form of pollution control technology. The term describes a variety of devices that use pollutants from a furnace flue gas or from other gas streams. In a wet scrubber, the polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid, by forcing it through a pool of liquid, or by some other contact method, so as to remove the pollutants.

Legal regulations[edit]

Smog in Cairo
In general, there are two types of air quality standards. The first class of standards (such as the U.S. National Ambient Air Quality Standards and E.U.Air Quality Directive) set maximum atmospheric concentrations for specific pollutants. Environmental agencies enact regulations which are intended to result in attainment of these target levels. The second class (such as the North American Air Quality Index) take the form of a scale with various thresholds, which is used to communicate to the public the relative risk of outdoor activity. The scale may or may not distinguish between different pollutants.

Canada[edit]

In Canada air pollution and associated health risks are measured with the The Air Quality Health Index or (AQHI). It is a health protection tool used to make decisions to reduce short-term exposure to air pollution by adjusting activity levels during increased levels of air pollution.
The Air Quality Health Index or "AQHI" is a federal program jointly coordinated by Health Canadaand Environment Canada. However, the AQHI program would not be possible without the commitment and support of the provinces, municipalities and NGOs. From air quality monitoring to health risk communication and community engagement, local partners are responsible for the vast majority of work related to AQHI implementation. The AQHI provides a number from 1 to 10+ to indicate the level of health risk associated with local air quality. Occasionally, when the amount of air pollution is abnormally high, the number may exceed 10. The AQHI provides a local air quality current value as well as a local air quality maximums forecast for today, tonight and tomorrow and provides associated health advice.
12345678910+
Risk:Low (1-3)Moderate (4-6)High (7-10)Very high (above 10)
As it is now known that even low levels of air pollution can trigger discomfort for the sensitive population, the index has been developed as a continuum: The higher the number, the greater the health risk and need to take precautions. The index describes the level of health risk associated with this number as ‘low’, ‘moderate’, ‘high’ or ‘very high’, and suggests steps that can be taken to reduce exposure.
Health RiskAir Quality Health IndexHealth Messages
At Risk populationGeneral Population
Low1-3Enjoy your usual outdoor activities.Ideal air quality for outdoor activities
Moderate4-6Consider reducing or rescheduling strenuous activities outdoors if you are experiencing symptoms.No need to modify your usual outdoor activities unless you experience symptoms such as coughing and throat irritation.
High7-10Reduce or reschedule strenuous activities outdoors. Children and the elderly should also take it easy.Consider reducing or rescheduling strenuous activities outdoors if you experience symptoms such as coughing and throat irritation.
Very highAbove 10Avoid strenuous activities outdoors. Children and the elderly should also avoid outdoor physical exertion.Reduce or reschedule strenuous activities outdoors, especially if you experience symptoms such as coughing and throat irritation.
It is measured based on the observed relationship of Nitrogen Dioxide (NO2), ground-level Ozone (O3) and particulates (PM2.5) with mortality from an analysis of several Canadian cities. Significantly, all three of these pollutants can pose health risks, even at low levels of exposure, especially among those with pre-existing health problems.
When developing the AQHI, Health Canada’s original analysis of health effects included five major air pollutants: particulates, ozone, and nitrogen dioxide (NO2), as well as sulfur dioxide (SO2), and carbon monoxide (CO). The latter two pollutants provided little information in predicting health effects and were removed from the AQHI formulation.
The AQHI does not measure the effects of odour, pollen, dust, heat or humidity.

Health effects[edit]

Air pollution is a significant risk factor for multiple health conditions including respiratory infections, heart disease, and lung cancer, according to the WHO. The health effects caused by air pollution may include difficulty in breathing, wheezing, coughing, asthma and aggravation of existing respiratory and cardiac conditions. These effects can result in increased medication use, increased doctor or emergency room visits, more hospital admissions and premature death. The human health effects of poor air quality are far reaching, but principally affect the body's respiratory system and the cardiovascular system. Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of exposure, the individual's health status and genetics.[citation needed]
The most common sources of air pollution include particulates, ozone, nitrogen dioxide, and sulfur dioxide. Both indoor and outdoor air pollution have caused approximately 3.3 million deaths worldwide. Children aged less than five years that live in developing countries are the most vulnerable population in terms of total deaths attributable to indoor and outdoor air pollution.[14]
The World Health Organization states that 2.4 million people die each year from causes directly attributable to air pollution, with 1.5 million of these deaths attributable to indoor air pollution.[15]"Epidemiological studies suggest that more than 500,000 Americans die each year fromcardiopulmonary disease linked to breathing fine particle air pollution. . ."[16] A study by theUniversity of Birmingham has shown a strong correlation between pneumonia related deaths and air pollution from motor vehicles.[17] Worldwide more deaths per year are linked to air pollution than to automobile accidents.[18] A 2005 study by the European Commission calculated that air pollution reduces life expectancy by an average of almost nine months across the European Union.[19] Causes of deaths include aggravated asthma, emphysema, lung and heart diseases, and respiratory allergies.[20] The US EPA estimates that a proposed set of changes in diesel engine technology (Tier 2) could result in 12,000 fewer premature mortalities, 15,000 fewer heart attacks, 6,000 fewer emergency room visits by children with asthma, and 8,900 fewer respiratory-related hospital admissions each year in the United States.[citation needed]
The US EPA estimates allowing a ground-level ozone concentration of 65 parts per billion, would avert 1,700 to 5,100 premature deaths nationwide in 2020 compared with the current 75-ppb standard. The agency projects the stricter standard would also prevent an additional 26,000 cases of aggravated asthma, and more than a million cases of missed work or school.[21][22]
The worst short term civilian pollution crisis in India was the 1984 Bhopal Disaster.[23] Leaked industrial vapours from the Union Carbide factory, belonging to Union Carbide, Inc., U.S.A., killed more than 25,000 people outright and injured anywhere from 150,000 to 600,000. The United Kingdom suffered its worst air pollution event when the December 4 Great Smog of 1952 formed over London. In six days more than 4,000 died, and 8,000 more died within the following months.[citation needed] An accidental leak of anthrax spores from a biological warfare laboratory in the former USSR in 1979 near Sverdlovsk is believed to have been the cause of hundreds of civilian deaths.[citation needed] The worst single incident of air pollution to occur in the US occurred in Donora, Pennsylvania in late October, 1948, when 20 people died and over 7,000 were injured.[24]
A new economic study of the health impacts and associated costs of air pollution in the Los Angeles Basin and San Joaquin Valley of Southern California shows that more than 3800 people die prematurely (approximately 14 years earlier than normal) each year because air pollution levels violate federal standards. The number of annual premature deaths is considerably higher than the fatalities related to auto collisions in the same area, which average fewer than 2,000 per year.[25][26][27]
Diesel exhaust (DE) is a major contributor to combustion derived particulate matter air pollution. In several human experimental studies, using a well validated exposure chamber setup, DE has been linked to acute vascular dysfunction and increased thrombus formation.[28][29] This serves as a plausible mechanistic link between the previously described association between particulates air pollution and increased cardiovascular morbidity and mortality.

Effects on cardiovascular health[edit]

A 2007 review of evidence found ambient air pollution exposure is a risk factor correlating with increased total mortality from cardiovascular events (range: 12% to 14% per a 10 microg/m3 increase). PMID 19235364.
Air pollution is also emerging as a risk factor for stroke, particularly in developing countries where pollutant levels are highest.[30] A 2007 study found that in women air pollution is associated not with hemorrhagic but with ischemic stroke.[31] Air pollution was also found to be associated with increased incidence and mortality from coronary stroke in a cohort study in 2011.[32]Associations are believed to be causal and effects may be mediated by vasoconstriction, low-grade inflammation or autonomic nervous system imbalance or other mechanisms. [33] [34]

Effects on cystic fibrosis[edit]

A study from around the years of 1999 to 2000, by the University of Washington, showed that patients near and around particulates air pollution had an increased risk of pulmonary exacerbations and decrease in lung function.[35] Patients were examined before the study for amounts of specific pollutants like Pseudomonas aeruginosa or Burkholderia cenocepacia as well as their socioeconomic standing. Participants involved in the study were located in the United States in close proximity to an Environmental Protection Agency.[clarification needed]During the time of the study 117 deaths were associated with air pollution. Many patients in the study lived in or near large metropolitan areas in order to be close to medical help. These same patients had higher level of pollutants found in their system because of more emissions in larger cities. As cystic fibrosis patients already suffer from decreased lung function, everyday pollutants such as smoke, emissions from automobiles, tobacco smoke and improper use of indoor heating devices could further compromise lung function.[36]

Effects on COPD and asthma[edit]

Chronic obstructive pulmonary disease (COPD) includes diseases such as chronic bronchitisand emphysema.[37]
Researches have demonstrated increased risk of developing asthma [38] and COPD[39] from increased exposure to traffic-related air pollution. Additionally, air pollution has been associated with increased hospitalizations and mortality from asthma and COPD.[40][41]
A study conducted in 1960-1961 in the wake of the Great Smog of 1952 compared 293 London residents with 477 residents of Gloucester, Peterborough, and Norwich, three towns with low reported death rates from chronic bronchitis. All subjects were male postal truck drivers aged 40 to 59. Compared to the subjects from the outlying towns, the London subjects exhibited more severe respiratory symptoms (including cough, phlegm, and dyspnea), reduced lung function (FEV1 and peak flow rate), and increased sputum production and purulence. The differences were more pronounced for subjects aged 50 to 59. The study controlled for age and smoking habits, so concluded that air pollution was the most likely cause of the observed differences.[42]
It is believed that much like cystic fibrosis, by living in a more urban environment serious health hazards become more apparent. Studies have shown that in urban areas patients suffer mucushypersecretion, lower levels of lung function, and more self diagnosis of chronic bronchitis and emphysema.[43]

Links to cancer[edit]

A review of evidence regarding whether ambient air pollution exposure is a risk factor for cancer in 2007 found solid data to conclude that long-term exposure to PM2.5 (fine particulates) increases the overall risk of nonaccidental mortality by 6% per a 10 microg/m3 increase.PMID 19235364
Exposure to PM2.5 was also associated with an increased risk of mortality from lung cancer (range: 15% to 21% per a 10 microg/m3 increase) and total cardiovascular mortality (range: 12% to 14% per a 10 microg/m3 increase). PMID 19235364
The review further noted that living close to busy traffic appears to be associated with elevated risks of these three outcomes increase in lung cancer deaths, cardiovascular deaths, and overall nonaccidental deaths. PMID 19235364
The reviewers also found suggestive evidence that exposure to PM2.5 is positively associated with mortality from coronary heart diseases and exposure to SO2 increases mortality from lung cancer, but the data was insufficient to provide solid conclusions.
In 2011, a large Danish epidemiological study found an increased risk of lung cancer for patients who lived in areas with high nitrogen oxide concentrations. In this study, the association was higher for non-smokers than smokers.[44] An additional Danish study, also in 2011, likewise noted evidence of possible associations between air pollution and other forms of cancer, including cervical cancer and brain cancer.[45]

Effects on children[edit]

Around the world, children living in cities with high exposure to air pollutants are at increased risk of developing asthma, pneumonia and other lower respiratory infections. Because children are outdoors more and have higher minute ventilation they are more susceptible to the dangers of air pollution. Risks of low initial birth weight are also heightened in such cities.
The World Health Organization reports that the greatest concentrations of particulates are found in countries with low economic world power and high poverty and population growth rates. Examples of these countries include EgyptSudanMongolia, and Indonesia. However even in the United States, despite the passage of the Clean Air Act in 1970, in 2002 at least 146 million Americans were living in non-attainment areas—regions in which the concentration of certain air pollutants exceeded federal standards.[46] These dangerous pollutants are known as the criteria pollutants, and include ozone, particulates, sulfur dioxide, nitrogen dioxide, carbon monoxide, and lead. Protective measures to ensure children's health are being taken in cities such as New Delhi, India where buses now use compressed natural gas to help eliminate the "pea-soup" smog.[47]

Health effects in relatively "clean" areas[edit]

Even in the areas with relatively low levels of air pollution, public health effects can be significant and costly, since a large number of people breathe in such pollutants. A 2005 scientific study for the British Columbia Lung Association showed that a small improvement in air quality (1% reduction of ambient PM2.5 and ozone concentrations) would produce a $29 million in annual savings in the Metro Vancouver region in 2010.[48] This finding is based on health valuation of lethal (death) and sub-lethal (illness) effects.

Reduction efforts[edit]

There are various air pollution control technologies and land use planning strategies available to reduce air pollution.[49][50] At its most basic level land use planning is likely to involve zoning and transport infrastructure planning. In most developed countries, land use planning is an important part of social policy, ensuring that land is used efficiently for the benefit of the wider economy and population as well as to protect the environment.
Efforts to reduce pollution from mobile sources includes primary regulation (many developing countries have permissive regulations),[citation needed] expanding regulation to new sources (such as cruise and transport ships, farm equipment, and small gas-powered equipment such as lawn trimmers, chainsaws, and snowmobiles), increased fuel efficiency (such as through the use ofhybrid vehicles), conversion to cleaner fuels (such as bioethanolbiodiesel, or conversion to electric vehicles).