Tuesday, 1 October 2013

Health effects[edit]

Air pollution is a significant risk factor for multiple health conditions including respiratory infections, heart disease, and lung cancer, according to the WHO. The health effects caused by air pollution may include difficulty in breathing, wheezing, coughing, asthma and aggravation of existing respiratory and cardiac conditions. These effects can result in increased medication use, increased doctor or emergency room visits, more hospital admissions and premature death. The human health effects of poor air quality are far reaching, but principally affect the body's respiratory system and the cardiovascular system. Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of exposure, the individual's health status and genetics.[citation needed]
The most common sources of air pollution include particulates, ozone, nitrogen dioxide, and sulfur dioxide. Both indoor and outdoor air pollution have caused approximately 3.3 million deaths worldwide. Children aged less than five years that live in developing countries are the most vulnerable population in terms of total deaths attributable to indoor and outdoor air pollution.[14]
The World Health Organization states that 2.4 million people die each year from causes directly attributable to air pollution, with 1.5 million of these deaths attributable to indoor air pollution.[15]"Epidemiological studies suggest that more than 500,000 Americans die each year fromcardiopulmonary disease linked to breathing fine particle air pollution. . ."[16] A study by theUniversity of Birmingham has shown a strong correlation between pneumonia related deaths and air pollution from motor vehicles.[17] Worldwide more deaths per year are linked to air pollution than to automobile accidents.[18] A 2005 study by the European Commission calculated that air pollution reduces life expectancy by an average of almost nine months across the European Union.[19] Causes of deaths include aggravated asthma, emphysema, lung and heart diseases, and respiratory allergies.[20] The US EPA estimates that a proposed set of changes in diesel engine technology (Tier 2) could result in 12,000 fewer premature mortalities, 15,000 fewer heart attacks, 6,000 fewer emergency room visits by children with asthma, and 8,900 fewer respiratory-related hospital admissions each year in the United States.[citation needed]
The US EPA estimates allowing a ground-level ozone concentration of 65 parts per billion, would avert 1,700 to 5,100 premature deaths nationwide in 2020 compared with the current 75-ppb standard. The agency projects the stricter standard would also prevent an additional 26,000 cases of aggravated asthma, and more than a million cases of missed work or school.[21][22]
The worst short term civilian pollution crisis in India was the 1984 Bhopal Disaster.[23] Leaked industrial vapours from the Union Carbide factory, belonging to Union Carbide, Inc., U.S.A., killed more than 25,000 people outright and injured anywhere from 150,000 to 600,000. The United Kingdom suffered its worst air pollution event when the December 4 Great Smog of 1952 formed over London. In six days more than 4,000 died, and 8,000 more died within the following months.[citation needed] An accidental leak of anthrax spores from a biological warfare laboratory in the former USSR in 1979 near Sverdlovsk is believed to have been the cause of hundreds of civilian deaths.[citation needed] The worst single incident of air pollution to occur in the US occurred in Donora, Pennsylvania in late October, 1948, when 20 people died and over 7,000 were injured.[24]
A new economic study of the health impacts and associated costs of air pollution in the Los Angeles Basin and San Joaquin Valley of Southern California shows that more than 3800 people die prematurely (approximately 14 years earlier than normal) each year because air pollution levels violate federal standards. The number of annual premature deaths is considerably higher than the fatalities related to auto collisions in the same area, which average fewer than 2,000 per year.[25][26][27]
Diesel exhaust (DE) is a major contributor to combustion derived particulate matter air pollution. In several human experimental studies, using a well validated exposure chamber setup, DE has been linked to acute vascular dysfunction and increased thrombus formation.[28][29] This serves as a plausible mechanistic link between the previously described association between particulates air pollution and increased cardiovascular morbidity and mortality.

Effects on cardiovascular health[edit]

A 2007 review of evidence found ambient air pollution exposure is a risk factor correlating with increased total mortality from cardiovascular events (range: 12% to 14% per a 10 microg/m3 increase). PMID 19235364.
Air pollution is also emerging as a risk factor for stroke, particularly in developing countries where pollutant levels are highest.[30] A 2007 study found that in women air pollution is associated not with hemorrhagic but with ischemic stroke.[31] Air pollution was also found to be associated with increased incidence and mortality from coronary stroke in a cohort study in 2011.[32]Associations are believed to be causal and effects may be mediated by vasoconstriction, low-grade inflammation or autonomic nervous system imbalance or other mechanisms. [33] [34]

Effects on cystic fibrosis[edit]

A study from around the years of 1999 to 2000, by the University of Washington, showed that patients near and around particulates air pollution had an increased risk of pulmonary exacerbations and decrease in lung function.[35] Patients were examined before the study for amounts of specific pollutants like Pseudomonas aeruginosa or Burkholderia cenocepacia as well as their socioeconomic standing. Participants involved in the study were located in the United States in close proximity to an Environmental Protection Agency.[clarification needed]During the time of the study 117 deaths were associated with air pollution. Many patients in the study lived in or near large metropolitan areas in order to be close to medical help. These same patients had higher level of pollutants found in their system because of more emissions in larger cities. As cystic fibrosis patients already suffer from decreased lung function, everyday pollutants such as smoke, emissions from automobiles, tobacco smoke and improper use of indoor heating devices could further compromise lung function.[36]

Effects on COPD and asthma[edit]

Chronic obstructive pulmonary disease (COPD) includes diseases such as chronic bronchitisand emphysema.[37]
Researches have demonstrated increased risk of developing asthma [38] and COPD[39] from increased exposure to traffic-related air pollution. Additionally, air pollution has been associated with increased hospitalizations and mortality from asthma and COPD.[40][41]
A study conducted in 1960-1961 in the wake of the Great Smog of 1952 compared 293 London residents with 477 residents of Gloucester, Peterborough, and Norwich, three towns with low reported death rates from chronic bronchitis. All subjects were male postal truck drivers aged 40 to 59. Compared to the subjects from the outlying towns, the London subjects exhibited more severe respiratory symptoms (including cough, phlegm, and dyspnea), reduced lung function (FEV1 and peak flow rate), and increased sputum production and purulence. The differences were more pronounced for subjects aged 50 to 59. The study controlled for age and smoking habits, so concluded that air pollution was the most likely cause of the observed differences.[42]
It is believed that much like cystic fibrosis, by living in a more urban environment serious health hazards become more apparent. Studies have shown that in urban areas patients suffer mucushypersecretion, lower levels of lung function, and more self diagnosis of chronic bronchitis and emphysema.[43]

Links to cancer[edit]

A review of evidence regarding whether ambient air pollution exposure is a risk factor for cancer in 2007 found solid data to conclude that long-term exposure to PM2.5 (fine particulates) increases the overall risk of nonaccidental mortality by 6% per a 10 microg/m3 increase.PMID 19235364
Exposure to PM2.5 was also associated with an increased risk of mortality from lung cancer (range: 15% to 21% per a 10 microg/m3 increase) and total cardiovascular mortality (range: 12% to 14% per a 10 microg/m3 increase). PMID 19235364
The review further noted that living close to busy traffic appears to be associated with elevated risks of these three outcomes increase in lung cancer deaths, cardiovascular deaths, and overall nonaccidental deaths. PMID 19235364
The reviewers also found suggestive evidence that exposure to PM2.5 is positively associated with mortality from coronary heart diseases and exposure to SO2 increases mortality from lung cancer, but the data was insufficient to provide solid conclusions.
In 2011, a large Danish epidemiological study found an increased risk of lung cancer for patients who lived in areas with high nitrogen oxide concentrations. In this study, the association was higher for non-smokers than smokers.[44] An additional Danish study, also in 2011, likewise noted evidence of possible associations between air pollution and other forms of cancer, including cervical cancer and brain cancer.[45]

Effects on children[edit]

Around the world, children living in cities with high exposure to air pollutants are at increased risk of developing asthma, pneumonia and other lower respiratory infections. Because children are outdoors more and have higher minute ventilation they are more susceptible to the dangers of air pollution. Risks of low initial birth weight are also heightened in such cities.
The World Health Organization reports that the greatest concentrations of particulates are found in countries with low economic world power and high poverty and population growth rates. Examples of these countries include EgyptSudanMongolia, and Indonesia. However even in the United States, despite the passage of the Clean Air Act in 1970, in 2002 at least 146 million Americans were living in non-attainment areas—regions in which the concentration of certain air pollutants exceeded federal standards.[46] These dangerous pollutants are known as the criteria pollutants, and include ozone, particulates, sulfur dioxide, nitrogen dioxide, carbon monoxide, and lead. Protective measures to ensure children's health are being taken in cities such as New Delhi, India where buses now use compressed natural gas to help eliminate the "pea-soup" smog.[47]

Health effects in relatively "clean" areas[edit]

Even in the areas with relatively low levels of air pollution, public health effects can be significant and costly, since a large number of people breathe in such pollutants. A 2005 scientific study for the British Columbia Lung Association showed that a small improvement in air quality (1% reduction of ambient PM2.5 and ozone concentrations) would produce a $29 million in annual savings in the Metro Vancouver region in 2010.[48] This finding is based on health valuation of lethal (death) and sub-lethal (illness) effects.

Reduction efforts[edit]

There are various air pollution control technologies and land use planning strategies available to reduce air pollution.[49][50] At its most basic level land use planning is likely to involve zoning and transport infrastructure planning. In most developed countries, land use planning is an important part of social policy, ensuring that land is used efficiently for the benefit of the wider economy and population as well as to protect the environment.
Efforts to reduce pollution from mobile sources includes primary regulation (many developing countries have permissive regulations),[citation needed] expanding regulation to new sources (such as cruise and transport ships, farm equipment, and small gas-powered equipment such as lawn trimmers, chainsaws, and snowmobiles), increased fuel efficiency (such as through the use ofhybrid vehicles), conversion to cleaner fuels (such as bioethanolbiodiesel, or conversion to electric vehicles).

No comments:

Post a Comment